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ABSTRACT 

The 8- to 13-p, thermal  scans made of Mars  in 1954 by Sinton and Strong 

a re  the best  source of information available on the distribution of temperature 

over the disk. 

disk temperature in the light a r e a s  of 290°K found by Sinton and Strong. 

I have analyzed all these scans, normalizing to  the center-of- 

The observed equatorial temperature distribution between sunrise and 

midafternoon can be reproduced by a solution of the standard heat-conduction 

equation for  a homogeneous subsurface when current  values for  the planetary 

albedo and emissivity a r e  employed. 

a r e a s  is from 303  to 180°K with a thermal  inertia of 0. 004 to 

0 . 0 0 5  cal  c m  sec  deg ; the thermal  inertia of the dark a r e a s  is 

slightly larger .  Mean particle s izes  for the two a r e a s  a r e  estimated f rom 

the thermal  conductivities to  be 20  to 40 p, and 100 to 300 ti, respectively. 

The temperature range in  the bright 

- 2  - 1 / 2  -1 

The latitudinal temperature gradient is in accord with the above model 

for  northern latitudes, but i n  the south the temperatures  a r e  depressed, 

consistent with the presence of a polar cap of frozen carbon dioxide. 

latitudes, a major  fraction of the atmospheric water vapor is  expected to 

condense at night. 

wavelengths a r e  a lso consistent with these thermal  properties. 

At all 

The radio brightness temperatures observed at centimeter 
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L e s  balayages thermiques de Mars e n t r e  8 e t  131.1, qui  ont e'te' f a i t s  en 

1954 par  Sinton e t  Strong sont l a  meil leure  source d' information u t i l i -  

sab le  concernant l a  d i s t r i b u t i o n  de tempgrature s u r  l e  disque, 

analys; tous ces balayages,  en normalisant l a  temphrature du c e n t r e  

du disque de 2 9 0 ° K  trouvke par  Sinton e t  Strong dans l e s  rggions c l a i r e s .  

J ' a i  

La d i s t r i b u t i o n  de la  tempkrature dquator ia le  observe'e en t r e  l e  l eve r  

du s o l e i 1  e t  l e  mil ieu de l 'aprhs-midi peut 6 t r e  reprodui te  par  une so -  

l u t  i o n  de l 'e'quation classique de l a  conduction thermique d'une sous- 

sur face  homogGne, quand des  va leurs  cour :~ntes  de l ' a lbedo  e t  de l ' e ' m i s s i -  

vi te '  p l ank ta i r e s  sont  employges. La gamme de temp6rature dans l e s  re'- 
gions c l a i r e s  s ' g t end  de 303 ; 180°K avec une i n e r t i e  thermique de 

0,004 & 0,005 c a l  cm'2 sec-'deg-l; l ' i n e r t i ?  thermique des r6gions som- 

b res  e s t  lggirement plus  grande. 

sont estimkes & p a r t i r  des conduc t ib i l i t g s  thermiques 

vement de 20 & 4 0 ~  e t  de 100 & 3001-1 pour l e s  deux rkgions.  

Les t a i l l e s  des p a r t i c u l e s  moyennes 

6 t r e  r e spec t i -  

Le gradient de tempdrature l a t i t ud i r i a l e  e s t  en accord avec l e  modzle 

ci-dessus pour l e s  1atitTides du Nord, m a i s  au Sud l e s  temp&atures sont  

abaissges ,  ce qui e s t  compatible avec la prgsence d'une c a l o t t e  po la i r c  

de carbone dioxide gel;. On prgsume qu'une importa:lte f r a c t i o n  de la  

vapeur d 'eau atmosphkrique s e  condense la  nuit; t ou te s  l e s  l a t i t t i d e s .  

L e s  temp&rat-lrzs de b r i l l a n c e  observges aux ondes centimktriques sont  

a u s s i  compatibles avec ces  proprie'te's tIiermiqties. 

V 
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MARTIAN SURFACE TEMPERATURES 

David Morrison 

1.  INTRODUCTION 

Determination of the surface temperature of Mars  and of its diurnal and 

seasonal variations has  been a topic of scientific investigation for  many dec- 

ades. 

and Wallace (1 907) both concluded that the maximum temperature was s imilar  

to that of the earth, since the greater  distance of Mars  f rom the sun was com- 

pensated f o r  by its lower albedo. (At noon at the mean distance f rom the sun, 

the theoretical temperature,  when atmosphere and subsurface heat conduction 

a r e  neglected, var ies  f rom 320°K for  a perfect blackbody to 298°K for  a n  

albedo of 0.25. ) However, Wallace s t ressed  that Mars ,  lacking the modera- 

tion of oceans o r  the greenhouse effect of a massive atmosphere, should 

experience rapid radiative cooling at night, leading to a low mean temperature 

and a large diurnal temperature range. 

In  their  c lass ic  exchange at the beginning of this century, Lowell (1906) 

4. .P 

In the 192O's, Coblentz and Lampland at Lowell Observatory and Pettit 

and Nicholson at Mount Wilson made the first measurements of Martian 

surface temperatures.  F r o m  a reanalysis of the observations of Lampland, 

Gifford (1956) gives a peak temperature of 280"K, somewhat lower than 

expected. 

af ter  noon on the planet, indicative of a thermal  conductivity much grea te r  

than that of the moon. 

The temperature maximum also appeared to fall severa l  hours 

This r e sea rch  was supported in par t  by grant NGR 09-015-023 f rom the 
National Aeronautics and Space Administration. 

Wallace also made the interesting suggestions that the surface of M a r s  is 
covered with a dusty, porous layer  of low thermal conductivity' and that the 
temperatures  are too low f o r  the polar caps to me l t  at the observed rate  if 
they are composed of ice. While he mentioned that temperatures might be 
low enough f o r  carbon dioxide to f reeze,  he did not consider that the Martian 
polar caps might be carbon dioxide. 

:;: 
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During the favorable Martian opposition of 1954, Sinton and Strong of 

Johns Hopkins University used the ZOO-inch telescope on Mount Palomar to 

make thermal  maps of Mars  with a n  angular resolution of 1. 5 a rcsec .  They 

found a n  average temperature  at the center of the disk of 292 OK and made 3 3  

scans a c r o s s  the planetary disk to determine the variation of temperature  

with position. F r o m  six of the equatorial  scans,  Sinton and Strong (1960a) 

derived a value for  the thermal  iner t ia  of the surface of between 0.004 and 

0. 010 cal  c m  sec  deg and estimated a nighttime minimum temperature  

of about 200" K. 

-2 -1/2 -1 

The thermal  observations of Sinton and Strong remain the best  available, 

and severa l  authors making theoretical  studies of Mars  have utilized them 

(Leovy, 1966; Leighton and Murray, 1966; Gierasch and Goody, 1968). The 

six published scans represent  only a fraction, however, of the data obtained 

by Sinton and Strong. 

1954 scans.  

temperature  map of the daytime face of the planet and to refine the determina- 

tion of the variation of equatorial temperature  with solar  hour angle. I a lso 

discuss the determination of the the rma l  properties of the planetary surface 

f r o m  these data and the implications of the resul ts  for  the study of the meteor-  

ology of Mars  and the mechanical propert ies  of its surface mater ia l .  

In this report ,  I discuss  a new reduction of all the 

F r o m  this l a rge r  body of data, it is possible to construct a 



2. DATA REDUCTION 

Sinton and Strong (196Oa, b) have given detailed descriptions of their 

observational and data-reduction techniques. Briefly, the observations were 

made with an infrared radiometer at the coudg focus of the ZOO-inch telescope 

in July 1954. The detector was a Golay cell, exposed to radiation alternately 

f rom the planet and f rom the adjacent sky, with a chopping frequency of 10 Hz. 

The passband of the system was defined by the atmospheric window between 

7 and 14 p, with an Eastman Kodak s i lver  sulfide f i l ter  used to  exclude all 

wavelengths short  of 5. 5 p. The entrance aperture  was 1. 5 arcsec,  and the 

time constant of the system, 4 sec. 

slight modification to measu re  the temperature of the center of the disk. In 

this mode of operation, a reflection from a n  uncoated quartz flat  a t  14" inci- 

dence was used to weight the sensitivity of the system toward 8. 9 p, where 

atmospheric transmission is relatively great, and the entrance aperture  was 

increased to 5 arcsec.  

pe rature- controlled blackbody cavities provided the calibration. 

The same instrument was also used with 

A comparison of the planetary flux with that of tem- 

All the observations were made at zenith distances of between 63" and 

72" during twilight before the regular observing program of the telescope 

began. Calibrations were made for  the quartz-band observations used to 

determine the temperature  near  the center of the disk, but they were not made 

for  the high-resolution scans. 

Sinton and Strong normalized each to the same deflection at the disk center;  

they then converted them to temperature,  using a plot of instrumental  deflection 

as a function of the temperature  they obtained f rom observations made in 1953 

with a monochromator transmitting in  a band f rom 8.2 to 12.4 p. To confirm 

the applicability of their  plot to these observations, I have computed the 

expected f l u x  in the atmospherically limited instrumental band as a function 

of temperature f o r  a blackbody radiator, using the atmospheric transmission 

given by Sinton and Strong (1960b). 

function of the fourth power of the temperature;  this is the fo rm used by Sinton 

and Strong, although we could equally well plot against any power of the tem- 

perature. 

To reduce the six equatorial scans they published, 

Figure 1 gives this computed flux as a 

The instrumental deflection should be proportional to this flux. 
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Figure 1. The absc issa  is the response of the infrared radiometer,  
through the 8- to 13-p atmospheric window, as a function 
of the fourth power of the temperature  of the planet. The 
response scale is arbi t rary.  Temperatures  given on the 
curve a r e  in OK. 

F o r  each of the 33  scans of Mars,  Sinton and Strong ( 1 9 6 0 ~ )  have published 

a tracing of the deflection as a function of t ime and a corresponding plot of 

the path of the scan a c r o s s  the planetary disk. Figure 2, taken f r o m  their  

report ,  shows this information for  three scans.  The path a c r o s s  the disk 

was determined f rom photographs taken with a camera  mounted behind the 

beam chopper of the instrument;  the numbers in Figure 2 correspond to  these 

measured positions. 

during each scan. 

Between two and four such determinations were made 
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Figure 2. Analog records  of Martian scans as presented by Sinton and 
Strong (1 96 O a ) .  
1. 5 -a rcsec  aperture.  

The open circle  i l lustrates the s ize  of the 

To utilize the hundreds of individually measured temperatures  that can 

be derived f rom these data, I have digitized the deflections and positions at 
intervals of 1 a r c s e c  along each scan. 

a n  a rb i t ra ry  scale  above a base line that I drew, and the positions were ex- 

pressed in a Cartesian (x, y) coordinate system centered on the disk, which 

was assumed to have unit radius with south at the top. 

The deflections were measured on 

At the t ime of observation, Mars  had a phase angle of 18 and the 

latitude of the subearth point was +5" ; thus, a coordinate transformation 

that includes rotations is necessary fo r  deriving planetary latitudes and 

longitudes f rom the (x, y) positions. 

tions a r e  derived in  Appendix A. Using them, I found for  each point the a reo-  

graphic latitude, longitude, and solar  hour angle, and a l so  the zenith distances 

These general  transformation equa- 
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of the sun and the earth.  It should be noted that, nea r  the limb, these a r e  

extremely sensitive to the (x, y) coordinates and hence to any e r r o r s  in the 

photographically determined scan  positions given by Sinton and Strong. 

I first made a preliminary reduction of the data, based on the assumption 

that the same deflection scale applies to all the analog records.  

the general  variation of temperature  a c r o s s  the disk was obtained. 

temperature  was found to be 10" to 12" higher than the temperature  at the 

center of the disk determined by Sinton and Strong with the 5-arcsec  aperture ,  

and the variation of temperature  with latitude for Iyl < 0.25  was found to be 

less  than 2 a . With this information (confirmed in the final reduction), I 

reconverted the deflections to  temperatures  for  all east-west scans with 

Iyl < 0.25, using the relation of Figure 1 and normalizing each scan to 300°K 

at its peak. The resulting average run of temperature  with x provided in turn  

the normalization for  all the north- south scans. 

east-west scans were normalized to the two standard north- south scans dis- 

cussed below, although because of the repeated normalizations these east-west 

scans were given lower weight in the final reductions. 

In  this way 

The peak 

Finally, the nonequatorial 

Figure 3 i l lustrates the paths ac ross  the disk of two particularly inter-  

esting sets  of north-south scans.  On July 20, scans 9 and 10 were made in 

quick succession crossing the equator at solar  hour angle t 4 "  and passing 

over Sinus Meridiani. 

all c rossed  the equator at hour angle - 35 " to - 40" ; because of planetary 

rotation, however, only scan 8 c rossed  Sinus Margarit ifer.  The variation 

of temperature  with y for these two se ts  of scans is shown in  Figure 4;  these 

a r e  a lso the temperatures  used to  normalize the nonequatdrial east-west 

scans.  

that of the surrounding light areas; it a l so  appears  that the temperature  on 

Sinus Margari t i fer  is elevated by about 4".  

a temperature  elevation of comparable s ize  on Syrt is  Major. These values 
are all derived from north-south scans,  since the diurnal variation of tem- 

perature  with position is too great  on east-west  scans  to permit  differences 

between light and dark  a reas  to be reliably determined. 

' 

Scan 14 f r o m  that date and scans 3 and 8 f rom July 21 

The temperature  of Sinus Meridiani near noon is 5" to 6" higher than 

In addition, there  is evidence of 

Sinus Meridiani, 

6 



S 

N 

Figure 3 .  Paths of the north-south scans discussed in the text. 
hatched a r e a  is that used to compute the standard equatorial 
temperature  variation to which the north-south scans were 
normalized. 

The c ross -  
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Figure 4. The two se t s  of north-south scans  shown in  Figure 3 .  
a r e  scans 9 and 10 f rom July 20; the c i rc les  a r e  scan 14 f rom 
July 20 and scans 3 and 8 f r o m  July 21. The two open c i rc les  
a r e  measurements  of Sinus Margarit ifer.  

The c rosses  
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Sinus Margarit ifer,  and Syrt is  Major a r e  the three major  dark  a r e a s  for  

which there  a r e  data;  north-south scans crossing paler dark areas such as 

Sinus Sabaeus show no evidence of an  elevated temperature.  F o r  this rea-  

son, I have treated all temperatures  not lying in one of these three major  

dark a reas  as representative of the predominant light areas of the planet. 

F r o m  the internal contradictions in the photographically determined posi- 

tions indicated by Sinton and Strong for each scan, it appears  that some scans 

may have large position e r r o r s .  

e r r o r s  by noting the discontinuity in  temperature  where a scan appeared to  

pass  near  a prominent dark a r e a  and by shifting the scan to place the dis- 

continuity at the co r rec t  areographic coordinates. In all such cases,  the 

entire scan was shifted, so  that no allowance was made for possible variation 

in the scan rate. 

points remain for  positions that should be off the disk, indicating that a typical 

e r r o r  in  position for a point may be 1 arcsec.  

In three cases,  I was able to co r rec t  these 

Even af ter  this adjustment, a number of nonzero temperature  

The reductions described above yield approximately 600 measured 

temperatures  on the disk of Mars.  These data are listed in Appendix B. 

I have grouped the data by regions, 1 0 "  by 1 0 "  in latitude and solar  hour 

angle, and have computed an  average temperature fo r  each region. Excluding 

points measured in the major dark a r e a s  o r  in  the position of the yellow cloud 

present  on July 20, I have obtained the brightness temperature  map of M a r s  

shown in  Figure 5. All points more  than 65"  f rom the subearth point (and 

hence within 1 a r c s e c  of the edge of the disk) were omitted. 

the variation of brightness temperature  with so la r  hour angle in  the equatorial 

regions; all east-west scan data f rom light a r e a s  between latitude -20"  and 

t 10" were included. The e r r o r  ba r s  show the standard deviation in  the mean 

for  each point. 

Figure 6 shows 

These data a r e  a lso listed in Table 1, to  be discussed below. 
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Figure 5. Brightness temperature map of Mars.  
are included. 
than the solid lines. Contour interval is 1 0  KO. 

All data f rom light a r eas  
The dashed isotherms are known with l e s s  accuracy 

Figure 6. Variation of equatorial brightness temperature of Mars  with so la r  
hour angle. 
each point. 

E r r o r  bars  show standard deviation in the mean fo r  
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In interpreting these temperatures  on Mars ,  I have considered the 

problem of deducing a temperature  f rom the nonlinear average made by the 

instrument, which measures  thermal  flux, over its field of view. As shown 

in Appendix C, the correction to the temperature  should be less than 1% for 

these data, unless a large amount of seeing motion during the 4-sec  integration 

period of the instrument caused the aperture  to average over a n  a r e a  of the 

disk much more  than 1. 5 a r c s e c  in  diameter;  if this was the case,  all the limb 

temperatures  given here  are severa l  degrees too high. 

In many cases  we wish to  know the t rue  thermometr ic  temperatures  as 

well as the brightness temperatures  discussed above. 

mometr ic  temperature,  we divide the brightness temperature  by the nth 

root of the radiometric emissivity, where n is  given by 

To convert to ther-  

1.439 
AT 

n = -  

(see Appendix C). 
I have used the infrared reflectance measurements between 0 . 5  and 22 p. made 

by Hovis and Callahan (1966) on crushed samples of t e r r e s t r i a l  rock to es t i -  

mate the radiometric emissivity f o r  such mater ia ls .  Taking the emissivity 

a t  each wavelength a s  1 minus the observed reflectance, I weighted it by the 

Planck function fo r  each choice of temperature and found the average over 

the spectrum. 

independent of temperature in the range 200 to 300°K. Depending on particle 

s ize ,  the values lie between 0.89 and 0 .96 ,  independent of mineral  composi- 

tion, with 0.93 the preferred choice for  particles less than 0.1 mm in size.  

A similar analysis gives a value of 0 .95  for  the emissivity in the 8 -  to 13-p 

spectral  band, independent of temperature,  composition, o r  particle size.  

Fo r  X = 10 p, n var ies  from 4. 8 at 300°K to 8. 0 at 180°K. 

The resulting radiometric emissivit ies are found to be virtually 

If the 8- t o  13-p. emissivity is isotropic, the factor  needed to convert to 

thermometr ic  temperature  var ies  f rom 1.011 at 300°K to 1.005 at 180°K. 

If, however, the emissivity has a directional dependence like that found by 
Sinton (1962) f o r  the moon, then near  the l imb a l a rge r  correction must  be 

10 



applied to convert the observations to  thermometr ic  temperatures.  

equatorial temperature  data a r e  summarized in  Table 1, where TB a r e  the 

brightness temperatures  plotted in  Figure 6, T 

obtained by use of the isotropic emissivity, and T 

variation of emissivity with direction, normalized to a mean of 0. 95. 

final columns give the standard deviation (r 

ber of d a t a  points N that were averaged. 

The 

a r e  the surface temperatures  

a r e  obtained with a lunar 2 

1 

The 

in the temperature  and the n u n -  T 

Table 1. Equatorial  brightness temperatures  and thermometr ic  tempera tures  

Solar 
hour angle T B (  OK) Tl(OK) T2("K)  (JT(K") N 

- 84 195 196 2 02 16  8 

- 74  209 210 215 11 8 

- 65 223 225 229 9 7 

- 55 24  6 248 249 9 11 

- 45 2 53 2 55 2 55 8 9 
- 35 271  2 74 2 74  7 7 

- 25 281 2 84 283 7 11 

- 1 5  291  2 94 293 4 12 

- 4  2 96 300 299 3 10 

t 5  300 3 03 303 1 9 
t 15 299  3 02 303 1 8 

t 24 2 93 2 96 2 98 1 6 
t 34 285 2 88 293 6 6 
t 43 269 2 72 280 8 7 

11 



3. COMPARISON WITH THERMAL MODELS 

For  a planet with little o r  no atmosphere, the surface and subsurface 

temperatures can be computed directly f rom a solution of the one-dimensional 

heat- conduction equation with appropriate radiative boundary conditions. 

Analytic solutions for  the simple case  of the moon have been obtained by 

Wesselink (1948) and Jaeger  (1953) and have been applied to  Mars  at its 

equinox by Sinton and Strong (1960a). 

digital computer is much more  flexible, especially when the insolation departs 

f rom a simple sine wave (see, e. g., Linsky, 1966; Leighton and Murray, 

1966; Morrison and Sagan, 1967). 

solutions to  the heat-conduction equation for  a homogeneous, plane-parallel 

medium with thermal  properties independent of depth and temperature.  The 

computer is capable of reproducing the diurnal insolation for any season and 

for  any position on Mars. I have not considered the effects of the latent heat 

of volatiles, since carbon dioxide will not condense at temperatures  appro- 

priate t o  equatorial and temperate latitudes (Leighton and Murray, 1966), 

while water, which will condense, is present i n  quantities so small as to 

have a negligible influence on the temperature.  

However, a numerical  solution by 

For this report, I have obtained computer 

Sinton and Strong (1960a) and Leovy (1966) have suggested that the 

atmosphere on Mars  may play a n  important role i n  the determination of 

surface temperatures.  

much less massive than had been supposed, and recent calculations by 

Gierasch and Goody (1968) have indicated that the atmosphere has very little 

effect on surface temperatures.  

that is nearly independent of t ime and has a magnitude of about 1% of the 

noon solar f l u x  (P. Gierasch, 1967, private communication). I have 

included this greenhouse effect in  m y  calculations, where it se rves  to increase 

the night temperatures  by a few degrees;  the corresponding increase in  the 

mean daily temperature  is somewhat smaller than the value of 8P 5 suggested 

f o r  this quantity by Sagan and Pollack (1968). 

However, it is now known that the atmosphere is 

There  is a small radiative f l u x  downward 

I have neglected all other 

12 



atmospheric effects and have computed tempera tures  to be compared with the 

observations by a straightforward solution of the heat- conduction equation. 

The three  parameters  that  must  be specified for each model a r e  the 

bolometric albedo, the radiometric emissivity, and the thermal  iner t ia  

(Kpc)1/2cal cm-' s ec  

is the density, and c i s  the heat capacity of the subsurface mater ia l .  

discussed above, I find f rom the data of Hovis and Callahan (1966) that an  

appropriate radiometr ic  emissivity i s  0.93. 

by de Vaucouleurs (1964) as 0. 30 f 0. 02 (p. e. ), while Walker (1966) finds 

f r o m  his measurements  of the albedo in the infrared that the value should 

be 0.23. 

e t ry  of McCord (1968) compares the brightness of light and dark  a reas ;  

he finds that the dark a r e a s  have half the albedo of the bright a r e a s  near  

1 -p wavelength, while the contrast  decreases  to  shor te r  wavelengths until 

it is negligible shor t  of 4500 A.  

me t r i c  albedo of the bright a r e a s  is near  0.25 and that of the dark  a r e a s  is 

somewhat more  than half this amount. 

surface temperature  as a function of albedo and thermal  iner t ia  computed 

for  the subsolar latitude on Mars  on July 20, 1954, with an assumed emis-  

sivity of 0.93. 

tu res  would be about 10"  lower. 

a reas ,  we see  that the observed peak temperature  of 3 0 3 ° K  (Table 1) indicates 

a thermal  iner t ia  of between 0. 004 and 0.005 cal c m  sec  deg ; for 

dark  a r e a s  of albedo 0.15 and peak tempera ture  308"K, the thermal  iner t ia  

is 0. 006 cal  c m  sec  deg . In o rde r  for the light and the dark  a r e a s  

to  have the same thermal  inertia,  their  peak temperatures  would have to 

differ by 10" for  this choice of albedo; alternatively, the thermal  iner t ias  

could be the same  fo r  a 5 "  temperature  difference i f  the albedos were  0.25 

and 0.20, respectively. 

-1 /2  -1 deg , where K is the thermal  conductivity, p 

As 

The bolometric albedo is given 

The above apply to  the planet as a whole. The differential colorim- 

0 

It therefore  seems likely that the bolo- 

Figure 7 shows the variation of peak 

At the average distance of Mars  f r o m  the sun, these tempera-  

Adopting an  albedo of 0.25 for  the bright 

-2  -1/2 -1 

-2 -1/2 - 1  
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Computations a r e  made for latitude - 8 ”  and heliocentric 
longitude 2 9 0 ” .  The radiometr ic  emissivity was taken to be 0.93. 

Figure 8 compares the equatorial  t empera tures  with those predicted by 

the heat-conduction calculations for  an albedo of 0 . 2 5  and two choices of 

thermal  inertia.  Both temperatures  T I  and T of Table 1 are plotted. As 

indicated above, a thermal  inertia of 0.004 cal cm sec  

well near  the peak; the f i t  is a lso acceptable over the rest of the curve, 

although the 0. 006 thermal- iner t ia  curve fits equally well in most places. 

The only ser ious problems a r i s e  for  the point at so la r  hour angle + 4 3  O ;  here,  

the f i t  is significantly better if we use the emissivity that var ies  with direction. 

This point may also be too low because of the presence of a cloud near  the 

afternoon limb; it is known (Sinton and Strong, 1960a) that such a cloud was 

present nearby on July 20. This low point is, of course, little more  than 

1 a r c s e c  f rom the limb of the planet. 

computed curves to the data seems very satisfactory, and the values for  the 

thermal  iner t ia  of 0. 01 0 suggested by Sinton and Strong (1 960a) and of 0.002 

deduced by Leovy (1 966) can probably be excluded. 

-1/2 -1 
deg fits very 

- 2  

On the whole, the f i t  of these two 
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Figure 8. Comparison of the data with theoretical  curves obtained f rom heat- 
conduction models. 
T2 (see Table 1). 
standard deviation in the mean) is shown. 
a r e  la eled b 

Filled circles  a r e  T1, and open circles  a r e  
Only half of each e r r o r  bar  (representing the 

The theoretical  curves 
the assumed thermal  iner t ia  (Kpc)1I2 cal  cm- 2 

s e c  - 1 p Z  deg-1, 

I have computed the expected distribution of temperature  for  the light and 

the dark a r e a s  on Mars  at the equinox (heliocentric longitude = 268")  using 

the combinations of thermal  iner t ia  and albedo suggested above; the resul ts  

a r e  shown in Figure 9. 
although during midmorning this difference is very  small. 

temperature  differences, about 15", develop near  sunset and pers i s t  through- 

out the night. If such temperature  differences do exist on Mars  between adja- 

cent light and dark  a reas ,  they may dr ive winds that a r e  analogous to the 

t e r r e s t r i a l  s e a  breeze. 

The dark  a reas  a r e  always hotter than the light, 

The greatest  
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Figure 9. Theoretical  temperature  distribution with latitude and so lar  
hour angle for  Mars  at the equinox (heliocentric longitude = 268").  
The upper map was computed for  li ht  areas:  
and thermal  iner t ia  = 0. 004 cal ern-% sec- l  /2  deg- l .  The lower 
map represents  dark  areas:  albedo = 0.15 and thermal  iner t ia  = 
0.006 ca l  cm-2 sec-1I2 deg-1. 

albedo = 0. 25 

Using data f rom north-south scans only, I have found the average varia- 

tion of brightness temperature  with latitude in the three  regions of so la r  hour 

angle shown in Figure 10. 

temperature  expected f rom the model with thermal  iner t ia  0.004 and albedo 

0.25 at heliocentric longitude 290". 

ference between brightness temperature  and thermometr ic  temperature ,  we 

see  that in the Northern Hemisphere the data f i t  the curve very well. In the 

Southern Hemisphere,  however, the data show a more  rapid temperature  

drop than at the corresponding positive latitudes, while the theoretical  curves 

drop more slowly. 

allowed for  in  the computation of theoretical  curves;  it was spring in  the 

Southern Hemisphere at the t ime of the observations, and the ground was 

cooler than would be expected f rom insolation alone. In addition, there  

The curve in this f igure is the thermometr ic  

When allowance is made for  the dif- 

This difference is due to seasonal effects that were  not 
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was still a large south polar cap. 

as observed i n  1924 (Slipher, 1962), its edge should have been near  latitude 

-60". A l inear  extrapolation f rom Figure 10 indicates that the temperature  

at this latitude was probably below 160" and is entirely compatible with a 

polar cap of frozen carbon dioxide at a temperature  of 145"K, as suggested 

by Leighton and Murray (1966) and Gierasch and Goody (1968). 

If the cap shrank in 1954 at the same ra te  

300 
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I 8 0  

0 - 2 O < L H A < - 5  

0 - 5  < L H A < + 1 5  

A +I5<LHA <+30 

0 I O  2 0  30 40 50 60 

LATITUDE 

-60 -50 -40 -30 - 2 0  -10 

Figure 10. Variation of temperature  with latitude. 
ave rage brig htne s s tempe ra tur  e s with indicated standard 
deviations in the mean. 
thermometr ic  temperature  for  an  albedo of 0.25 and a thermal  
iner t ia  of 0. 004 cal cm-2 sec-1/2 deg-l .  

The data points a r e  

The solid curve is the theoret ical  peak 

F o r  the two thermal  models of Figure 9, I have computed the disk 

temperature  (assuming unit emissivity) that would be observed at radio 

wavelengths of a few centimeters.  

means of techniques developed for the planet Mercury (Morrison and Sagan, 

1967); the temperature  distribution in  the two hemispheres was assumed to  

The f l u x  was averaged over the disk by 
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be identical, and no allowance was made for  seasonal effects. 

disk temperature for  the bright a r e a s  is 220', and that for the dark areas, 

228°K; reduced to the mean distance of the planet f rom the sun, these tempera- 

tu res  become 21 5 and 223' K. These numbers have probable e r r o r s  of l e s s  

than 5", and their  relative e r r o r  is less  than 2 ", The radar  reflectivity of 

Mars  at a wavelength of 12. 5 cm is about 8% (Goldstein, 1965); applying an 

emissivity of 0.90 to the above temperatures  gives disk brightness tempera-  

tures of 193 and 201"K, respectively. The brightness temperature observed 

at 3.75 c m  by Dent, Klein, and Aller (1965), reduced to  mean distance f rom 

the sun, is 190" f 12'K, in  good agreement with the computed number for the 

predominant bright a r eas  of Mars.  The requirement that a thermal  model 

reproduce the observed high surface temperatures  at noon and still predict 

a mean radio brightness temperature  as low as 200 "K effectively excludes 

values of the thermal  inertia as high a s  0.010 cal c m  

radio brightness temperature offers an  especially powerful argument for  low 

nighttime surface temperatures on Mars,  since the conclusions do not depend 

on the assumed model of homogeneous subsurface heat conduction with negli- 

gible moderation by the atmosphere. 

The resulting 

$6 

-2 - 1 / 2  deg -1 . The sec  

The preceding discussions have dealt only with models that specify a 

single value of the thermal  inertia for the epilith. ' It is quite reasonable, 

however, to imagine that, on a scale that is small with respect to the a r e a  

observed by the aperture,  there is a mixture of components (such as sand and 

rocks) having different thermal  properties.  I have experimented with combin- 

ing the fluxes in various proportions f rom two thermal  models to obtain 

average temperatures  to be compared with the observations. 

curves f rom most  such two-component models differ very l i t t le f rom those 

generated with a single component. 

can be closely duplicated by combining fluxes f rom 60 to 8070 material  with 

The temperature  

F o r  instance, the curves of Figure 8 

\k 
The determination of microwave emissivity f r o m  radar  c ros s  section depends 
on the model assumed f o r  the surface (see Rea, Hetherington, and Mifflin, 
1964); the number 0 . 9 0  is only approximate. 

Johnson (1968). 
'This term for  the particulate upper layer of a planet is recommended by 
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a thermal  inertia of 0. 002 with those f rom 20 to  40% mater ia l  with iner t ias  

of 0.010 o r  greater .  

neither a r e  they an improvement over single- component models. 

While such combinations are not excluded by the data, 
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4. DISCUSSION 

The preceding analysis shows that the most probable values for  the 

thermal  inertias of the bright and the dark  a reas  of Mars  are 0.004 and 

0.006 cal  cm sec  deg , respectively. These values character ize  

the top 2 o r  3 cm of the epilith. 
- 3  -1 

to be of o rde r  2 g c m  , and the specific heat capacity, 0. 15 cal g-l  deg 

The values of thermal  conductivity corresponding to these two iner t ias  are 

then 5 X l o m 5  and 12 X l o e 5  cal  c m  sec  deg . 

-2  -1/2 -1 

F o r  particulate matter, the density is likely 

. 

-1 -1 -1 

Leovy (1 966) has summarized a number of experimental determinations 

of thermal  conductivity of mineral  powders as a function of atmospheric 

pressure.  

strongly on particle s ize  but not on composition. F o r  the two values of the 

conductivity quoted above, the mean particle s izes  are 20 to  40 p and 

100 to 150 p for  the bright and the dark  areas, respectively. If, as sug- 

gested by Sagan and Pollack (1968), the dark areas a r e  highlands with typical 

p re s su res  of only 5 mb, then the derived particle s izes  are increased to 

200 to 300 p. 

since his value for  the Martian thermal  inertia was smaller than that found 

here. They a re ,  however, i n  excellent agreement with the s izes  of 25 p 

and 80 to  400 p obtained for  the bright and the dark  a r e a s  by Pollack and 

Sagan (1967) f rom a n  analysis of Martian photometry and polarimetry. 

At the Martian p re s su re  of 10 mb, these conductivities depend 

These s izes  a r e  considerably la rger  than those given by Leovy, 

The equatorial minimum temperatures  on Mars  a r e  probably between 

175 and 185"K, somewhat lower than ear l ie r  estimates.  At 180"K, the vapor 
- 2  -2 -6 p re s su re  of water is 5 X 10 dyn c m  , o r  5 X 10 of the 10-mb atmospheric 

pressure.  The spectroscopic studies of Kaplan, Munch, and Spinrad (1964) 

and of Schorn, Spinrad, Moore, Smith, and Giver (1967) indicate that the 

water-vapor content of the Martian atmosphere is typically about 10 

Assuming that this water vapor is concentrated in  the lower few kilometers 

of the troposphere, the water-vapor mixing ratio is of order  10 

- 3  -2  g cm . 
-4 and the 
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saturation vapor p re s su re  is reached at a temperature  of about 200°K. Thus, 

on the equator, f rost  can be expected to fo rm af ter  sunset and to pers i s t  until 

a n  hour o r  so after sunrise,  where it may be identified with the dawn haze. 

De Vaucouleurs (1954) reports  that the dawn haze sometimes pers i s t s  until 

midmorning; whether such behavior will occur i n  the temperature  regime 

discussed here  depends on the quantity of f ros t  deposited and on the evaporation 

rate,  both of which a r e  strongly dependent on the details of atmospheric 

turbulent diffusion near  the surface. In view of the afternoon temperatures  

predicted in Figure 9,  it s eems  unlikely that water  vapor could condense to 

f o r m  the midafternoon clouds reported by many observers  (see,  e. g., 
de Vaucouleurs, 1954; Slipher, 1962). 

The quantitative resul ts  presented here  for  Martian tempera tures  and 

thermal  properties a r e  ultimately based upon the accuracy of the absolute- 

temperature  calibration for  the center of the disk obtained by Sinton and 

Strong (196Oa). 

peak temperature  will make a substantial difference in the deduced thermal  

inertia. It is encouraging, however, that the thermal  iner t ia  derived f rom 

Figure 7 for  a peak temperature  of 303°K a lso  generates a theoretical  curve 

that is in good agreement with the data over the ent i re  observed range of 

so la r  hour angle without any -- ad hoc assumptions being necessary.  While 

the resul ts  a l so  depend strongly on the choice of bolometric albedos, the 

latter a r e  now known with sufficient accuracy. 

certain, but the resul ts  a r e  affected little by the choice of alternative values. 

As is shown in Figure 7, an  e r r o r  of a few degrees  in the 

The emissivit ies a r e  l e s s  

Since more  data have been utilized, the tempera ture  resul ts  presented 

Through he re  a r e  of higher accuracy than those given in previous studies. 

the use of currently accepted values for the  albedo and emissivit ies of Mars  

and by carrying out theoretical  computations for  the exact latitude and 

heliocentric longitude of the planet at the t ime of the observations, I have 

obtained a satisfactory f i t  to these temperatures  with a simple heat- conduction 

model. It thus seems  unnecessary to  use the m o r e  uncertain approach adopted 

by Leovy (1966), which depends on the application to Mars  of a theory developed 

for  the massive atmosphere of the earth. Also, the work of Gierasch and 
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Goody (1968) now strongly suggests that the atmosphere modifies only slightly 

the surface temperatures.  Finally, I note that Gifford's temperatures  (1 956), 

based on the work of Lampland, a r e  not compatible with the analysis presented 

here o r  with recent Mars  temperatures  derived by others. 

In s-mary, the major  conclusions f rom this  analysis of Sinton and 

Strong's 1954 infrared scans of Mars  a r e  that 

A. The observed Martian temperatures  can be reproduced by a 

theoretical  heat- conduction model employing a single, homogeneous surface 

layer. 

B. For  the bright a r eas ,  both the center-of-disk temperature  given by 

Sinton and Strong and the variation of temperature  with solar  hour angle found 

here  lead to  a thermal  inertia of 0.004 to  0.005 cal c m  sec deg . 
The disk brightness temperature  at radio wavelengths found by use of these 

inertias also agrees  with the observations. 

-2  -1/2 -1 

C. The darkest  a r e a s  on the planet have noon temperatures  4" to 6" 
higher than the surrounding bright a reas ,  indicative of a thermal  inertia 

0. 001 to  0. 002 la rger  than that of the bright a reas .  

D. The latitudinal temperature  gradient is steeper in the Southern than 

in  the Northern Hemisphere, consistent with the presence of a south polar 

cap of solid carbon dioxide. 

E. The thermal  inertias of bright and dark a reas  lead to  estimates of 

mean particle s izes  of 20 to 40 p and 100 to  300 p, respectively. 

F. At the minimum equatorial temperatures  of about 180"K, a major  . 
fraction of the atmospheric water vapor should condense each night. 
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APPENDIX A 

TRANSFORMATION TO ARE OGRAPHIC COORDINATES 

We wish to  make a transformation f rom Cartesian coordinates (x, y) 

centered on a planetary disk of unit radius to  the spherical  coordinate system 

of the planet itself. 

astronomical telescope, with celestial  south at the top in  the positive y 

direction, and eas t  to the right in the positive x direction. 

Let us  consider the planetary disk as it appears i n  a n  

The first transformation is a rotation in  the plane of the sky to coordi- 

nate axes aligned not with the celestial  cardinal points but with the projection 

onto the celestial  sphere of the planetary axis of rotation. 

rotation is  the position angle (PA) of the planetary axis as given in the 

American Ephemeris, defined as "the angle which the meridian f rom the 

central  point of the disk to the north pole of rotation forms  with the declina- 

tion circle through the central  point, measured eastward f rom the north 

point of the disk. I '  The new coordinates (XI, y') are given by 

The angle of 

x' = x cos (PA) - y sin (PA) 

y' = y cos (PA) + x sin (PA) . 

The next step is to rotate about the x' axis so  as to  bring the projected 

rotation axis (y') into coincidence with the t rue  axis (Y). 

coordinates, we define 
Retaining Cartesian 

The angle of rotation is given in the Ephemeris as De, the "planetocentric 

declination of the Earth.  I '  The transformation equations a r e  

A- 1 



X = x '  

Y = y' cos (De) - z' sin (D ) 

Z = z' cos (De) t y' sin (D ) 
e 

e . 

If we identify the positive Y axis with the south pole, the transformation to  

spherical  coordinates is 

where + is the latitude and 8 = 0 on the central  meridian. To  determ-ine the 

longitude X of a point, we must  use the Ephemerisvalue for the longitude of 

the central  meridian of the t ime of observation. 

Other parameters  of interest  for each point on the planet a r e  the solar  

hour angle (LHA), the elevation angle of the sun (as), and the elevation angle 

of the ea r th  (a ). These a r e  given by e 

LHA = - (e t i) 

a = sin 

a = sin (2) , 

-1 

-1 
[ s i n  (4) sin (Ds) t cos (9) cos (Ds) cos (LHA)] 

S 

e 

where the phase angle i 

a r e  both l isted in the Ephemeris.  

and the planetocentric declination of the s u n D  
S 
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APPENDIX B 

DATA LISTING 

Listed in this appendix are the reduced temperature data obtained f rom 

Two of the 3 3  scans the analog records given by Sinton and Strong (1960~) .  

given there  have not been included: scan 4 on July 20, because of inconsistent 

indications of position on the disk, and scan 6 on July 21, because it only 

grazed the l imb of the planet and could not be normalized. 

F o r  each scan, the following information is given: The first column, 

D, is the deflection of the radiometer on a n  a rb i t ra ry  scale. 
temperature,  TEMP, in  KO is that described in  the text. The columns X 

and Y a r e  the Cartesian coordinates of the point; the disk was taken to  have 

a radius of 100 and to  have the planetary south direction toward positive Y. 

The areographic coordinates of the point are labeled LAT and LONG, and 

LHA is the solar hour angle. The final column gives the nature of the a rea  

under observation: off the planet (SKY), bright a r e a  o r  mixed a r e a  (LGHT), 

Meridiani Sinus (MERI), Margarit ifer Sinus (MARG), Syrtis  Major (S. M. ), 

o r  the suspected yellow cloud on July 20 (CLD). The t imes,  central  meridians,  

and zenith distances for  each scan were given by Sinton and Strong (1960~) .  

The brightness 
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NARS DATA. JULY 209 SCAN 1 F t A R S  DATA. JULY 201  SCAN 2 

D TtMP X 

3 LO1 -106 
8 235 -98 

18  270 -90 
2 4  286 -82 
27 293 -75 
28 296 -65 
29  298 -57 
29  298 -49 
30  300 -41  
28 296 -31  
27  293 -24 
26  291  -16 
26 291  -8 
24  286 0 
2 1  279 10 
18 270 18  
17 267 25 
14  258 33 
12 251  43  

8 235 5 1  
8 235 59  
5 220 6 7  
4 212 76 
3 2 0 1  8 4  
1 174 92  

Y 

-20 
-18 
-16 
-16 
-14 
-14 
-12 
-10 
-10 

-8 
-8 
-6 
-6 
-4 
-2 

0 
0 
2 
4 
4 
6 
6 
8 
8 

10 

LAT LONG LHA 

11 296 48  
11 305 39 
11 312 3 1  
11 320 2 4  
10 326 18  

9 332 11 
10 337 7 

9 343 1 
9 34A -4 
8 353 -9 
8 357  -14 
7 2 -18 
5 7 -23 
4 .  11 -28 
4 17 -33 
3 2 1  -38 
2 27  -43 
1 32 -48 
0 38  -54 

-0 4 4  -60 
-2 52 -68 
-2 59 -75 
-4 7 1  -87 

D TtMP 

2 187 
16 260 
18 26h 
28 291  
32 299 
3 1  297 
3 1  297 
32 299 
3 1  297 
3 1  297 
29 293 
26  286 
25 284 
22 277 
2 1  274 
18  266 
15 257 
11 244 

9 236 
6 223 
4 208 
3 199 
1 173 

NkRS DATA. JULY 2 0 1  SCAN 3 

ARtA 

SKY 
SKY 

LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
MARG 
MAkG 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 

X 

-96 
-88 
-80 
-7 1 
-63 
-53 
-45 
-35 
-27 
-18 
-10 

-2 
6 

16 
27 
35  
45 
5 3  
63  
7 1  
8 0  
88  
9 6  

Y LAT LON; LHA AHtA 

3 1  
3 1  -17 
3 1  -16 
3 1  -15 
3 1  -15 
33  -16 
33  -16 
33 -15 
33  -15 
33  -15 
33 -15 
33  -15 
33 -15 
3 3  -15 
33 -15 
35  -17 
35  -17 
35  -17 
35 -17 
35 -18 
35  -18 
35 -19 
35  

SKY 
299 49 LGHT 
309 39 LGhT 
319 29  LGHT 
326 23 LGHT 
333 15  LGHT 
338 10 LGHT 
345 4 LGhT 
350 -1 LGHT 
356 -7 LGHT 

0 -12 LGhT 
5 -17 ,LGHT 

10  - 2 1  LGHT 
15 -27 LGHT 
23 -34 MAHG 
28 -40 LGHT 
3 4  -46 LGHT 
40 -52 LGHT 
47 -59 LGHT 
5 4  -66 LGHT 
6 4  -76 LGHT 
7 5  - A 7  LGHT 

SKY 

D TtMP 

2 202 
4 226 

12 271  
13  275 
14  279 
13  275 
15 283 
16  287 
15 283 
15  283 
13  275 
10 262 
8 251 
7 246 
5 233 
4 226 
3 217 
2 202 
1 182 
0 0  
0 0 

X Y 

-78 -63 
-71  -63 
-63 -61  
-55 - 6 1  
-47 -59 
-39 -59 
-31  -59 
-24 -57 
-16 -57 

-8 -55 
0 -55 
8 -55 

16 -53 
2 4  -53 
3 1  -51  
39  -51  
47 -49 
55 -49 
63  -47 
7 1  -47 
78  -45 

LAT LONG LHA AHLA 

4 1  
40  
40 
39 
40 
40 
39 
3 9  
38  
38 
38 
36  
36  
35  
3 4  
33  
33  
3 1  
3 1  
29  

5 K  Y 
296 50  CLD 
309 37 CLD 
318 28 LGHT 
327 20  LGhT 
333 13 LGHT 
340 6 LGHT 
347 -0 LGHT 
353 -6 LGHT 
358 -12 LGHT 
4 -18 LGHT 

10 -24 LGHT 
15 -29 LGhT 
2 1  -35 LGhT 
27 -40 LGHT 
33 -46 LGHT 
38 -52 LGHT 
45 -59 LGHT 
5 1  -65 LGHT 
59 -73 LGHT 
68 -81  LGHT 

MARS DATA. JULY 201  S C A h  5 

D TtMP X 

3 195 -106 
b 219 

20 265 
26 279 
32 2 9 1  
34  295 
37 300 
37 300 
36  298 
35  296 
34  L95 
32 2 9 1  
29  285 
26  279 
2 3  272 
2 1  267 
18  260 
1 4  248 
12  242 

9 232 
5 212 
3 195 
2 184 

-96 
-88 
-78 
-7 1 
-6 1 
-53 
-4 3 
-33 
-25 
-18 

2 
10  
18 
2 7  
37 
45 
55 
63 
73  
8 0  
9 0  

-a 

Y 

8 
8 
8 
8 
8 

10 
10 
10 
10 
10 
12 
12 
12  
12 
12  
14 
1 4  
14  
14 
14 
14 
16 
16  

LAT LONb LHA AHtA 

-3 
-2 
-2 
-1 
-2 
-2 
-2 
-2 
-1 
-3 
-2 
-2 
-2 
- 3  
-4 
-4 
-4 
-4 
-5 
-5 
-7 
-7 

SKY 
296 56  LGHT 
306 44 LGhT 
318 34  LGhT 
325 27 LGHT 
332 20 LGHT 
334 14  LGHT 
344 8 LGHT 
350 2 LGHT 
355 -3 LGHT 
360 -8 MER1 

5 -13 LGHT 
11 -19 LGHT 
15 -24 LGHT 
20 -28 YARG 
26  -34 MAHG 
32 -40 LGhT 
37 -45 LGHT 
43 -51  LGhT 
49 -57 LGHT 
57 -65 LGHT 
64 -72 LGHT 
75 -83 LGhT 
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k A H S  DATA. J U L Y  201 SCAN 6 

D T t M P  X Y L A T  LONG L H A  A H t A  

3 195 94 -35 
2 184 -94 -31 19 288 

12 242 -A6 -31 20 305 
2 1  267 -76 -31 2 1  317 
25 276 -69 -31 2 1  325 
29 285 -59 -33 23 332 
29 285 -49 -33 23 340 
32 291 -39 -33 23 347 
32 291 -29 -33 24 353 
3 1  289 -20 -33 24 360 
30 287 -10 -33 24 6 
29 285 0 -33 24 12 
2 5  276 10 -33 24 18 
23 272 20 -33 24 24 
20 265 29 -33 24 31 
17 257 39 -33 23 37 
1 3  245 49 -33 23 44 
1 1  239 59 -35 24 52 
10 235 69 -35 24 60 
8 228 76 -35 23 68 
5 2 1 2  86 -35 22 8 1  

66 
49 
37 
30 
22 
14 
7 
1 

-6 
-12 
-18 
-24 
-30 
-37 
-43 
-50 
-58 
-66 
-74 
-87 

MARS DATA, J U L Y  209 SCAN 8 

D TLMP X Y 

1 172 -103 -16 
1 1  241 -93 -16 
2 3  275 -85 -14 
30 291 -75 -14 
31 293 -65 -14 
34 298 -57 -12 
35 300 -50 -12 
34 298 -40 -12 
3 5  300 -30 -10 
3 3  297 -20 -10 
30 291 -10 -10 
29 289 0 -8 
26 282 10 -8 
22 273 20 -6 
17 260 30 -6 
16 257 40 -4 
14 2 5 1  5 1  -4 
12 245 61 -2 
9 234 71 -2 
3 197 81 0 
1 172 91 0 
0 0 101 0 

L A T  LONG L H A  

1 1  304 5 3  
10 316 42 
1 1  326 32 
1 1  334 24 
10 340 18 
1 1  345 12 
1 1  3 5 2  6 
10 358 -0 
10 4 -6 
10 10 -12 
9 16 -18 
9 21 -24 
8 27 -29 
8 33 -35 
6 39 -41 
6 47 -49 
5 54 -56 
4 61 -64 
3 70 -72 
2 81 -84 

SKY 
C L D  
C L D  
C L D  
C L  D 

LGHT 
LGHT 
L G H T  
LGHT 
LGHT 
L G H T  
LGHT 
L G H T  
LGHT 
LGHT 
LGHT 
L G H T  
L G H T  
LGHT 
LGHT 
LGHT 

AREA 

5K Y 
LGHT 
LGHT 

L G H T  
L G h T  
L G H T  
L G h T  
LGHT 
LGHT 
L G H T  
LGHT 
LGHT 
LGHT 
LGHT 
L G H T  
L G H T  
L G H T  
LGHT 
LGHT 
LGHT 

SK Y 

LGHT 

MARS D A T A +  JULY 209 SCAN 7 

0 TLMP X Y L A T  LONG L h A  P H k A  

1 175 
3 203 
5 221 
6 227 
7 2 3 2  
6 227 
b 236 
8 236 
6 227 
5 2 2 1  
3 203 
4 2 1 3  
3 203 
3 203 
3 203 

-73 -73 
-65 -73 48 299 57 
-53 -73 49 320 36 
-43 -73 50 332 24 
-33 -75 52 341 15 
-24 -75 52 351 5 
-16 -75 52 359 -3 
-8 -75 52 6 - 1 1  
0 -75 52 14 -18 
8 -75 5 2  21 -25 

l b  -75 52 29 -33 
24 -76 54 37 -41 
31 -76 54 46 -50 
39 -76 5 3  55 -59 
49 -76 53 67 -72 

MARS DATA. 

0 TLMP X Y 

0 0 -25 100 
0 0 -25 92 
1 172 -27 84 

10 238 -27 75 
2 2  273 -29 67 
26 283 -29 57 
31 2 9 3  -31 49 
30 291 -31 41 
32 295 -33 31 
3 5  301 -33 24 
38 306 -35 16 
35 301 -35 6 
32 295 -37 -2 
32 295 -37 -12 
33 297 -39 -20 
31 293 -39 -29 
27 285 -41 -37 
27 265 -41 -45 
22 273 -43 -53 
18 263 -43 -61 
12 245 -45 -71 
5 2 1 5  -45 -78 

S K Y  
C L D  

LGHT 
L 6 h T  
LGHT 
L G h T  
L G h T  
L G H T  
L G t i T  
L G H T  
L G H T  
L G H T  
L G h T  
L G H T  
L G H T  

JULY 209 SCAN 9 

L A T  L O N 6  L H A  AREA 

-64 344 17 
-54 351 10 
-44 356 5 
-38 357 4 
-31 359 2 
-25 358 2 
-20 359 2 
-14 359 2 
-10 359 2 
-5 3519 3 
1 358 3 
5 357 4 

1 1  357 4 
15 355 6 
2 1  354 7 
26 352 9 
31 350 11 
36 347 14 
41 344 17 
48 336 25 
54 326 33 

SKY 
L G H T  
L G h T  
LGHT 
LGHT 
L G h T  
L G H T  
L G h T  
LGHT 
M t H  I 
MER I 
MEk I 
L G H T  
L G H T  
L G H T  
L G H T  
LGHT 
L G H T  
L G H T  
L G h T  
L G H T  
L G H T  
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MARS DATAq JULY 209 SCAN 10 MARS DATA, JULY 209 SCAI-4 11 

D TkMP 

4 205 
20 266 
24 276 
28 284 
31 290 
33 294 
35 298 
37 301 
40 306 
40 306 
36 300 
35 298 
36 300 
33 294 
32 292 
26 280 
23 273 
17 258 
12 243 
10 236 
3 195 

X Y 

-20 84 
-24 76 
-25 69 
-25 61 
-27 53 
-29 45 
-31 35 
-33 25 
-35 18 
-37 8 
-39 0 
-41 -8 
-43 -18 
-45 -25 
-47 -33 
-47 -43 
-49 -51 
-51 -59 
-51 -69 
-53 -76 
-55 -84 

LAT LON6 

-53 2 
-46 1 
-39 2 
-33 3 
-28 3 
-23 2 
-17 2 
-11 1 
-6 360 
-1  359 
4 358 
8 356 
14 354 
19 352 
23 350 
29 348 
34 344 
39 340 
46 333 
52 321 

LrtA AREA 

1 LGHT 
2 LGHT 
1 LGHT 

-0 LGHT 
o LGHT 
1 LGHT 
1 LGHT 
2 LGHT 
3 MERI 
4 MERI 
5 LGHT 
7 LGHT 
8 LGHT 
11 LGHT 
13 LGHT 
15 LGHT 
18 LGHT 
23 LGHT 
30 LGHT 
42 LGHT 

SKY 

M A R S  DATA, JULY 2 0 9  SCAN 12 

D TEMP 

4 205 
8 229 

19 265 
22 272 
22 272 
27 284 
33 296 
35 299 
37 303 
35 299 
33 296 
26 281 
24 277 
16 262 
16 256 
7 225 
1 172 

X Y 

-49 82 
-49 73 
-49 63 
-51 55 
-51 47 
-53 37 
-53 27 
-53 20 
-55 12 
-55 2 
-55 -6 
-57 -24 
-57 -31 
-57 -41 
-59 -49 
-59 -59 
-59 -69 

LAT LONG 

-53 32Y 
-43 341 
-35 347 
-30 348 
-25 350 
-18 350 
-12 351 
-8 351 
-3 350 
2 350 
7 350 

17 347 
22 346 
28 344 
32 339 
39 335 
46 326 

LHA AREA 

37 LGHT 
25 LGHT 
19 LGhT 
18 LGHT 
16 LGHT 
16 LGHT 
15 LGHT 
14 LGHT 
15 LGHT 
15 LGHT 
16 LGHT 
19 LGHT 
20 LGHT 
22 LGHT 
2 6  LGHT 
31 LGHT 
40 LGHT 

D TEMP X Y LAT LON& 

3 184 -78 
3 184 -78 
9 220 -80 

15 236 -80 
21 249 -82 
30 265 -82 
35 273 -84 
34 272 -86 
28 262 -88 
22 251 -88 
13 231 -90 
14 233 -90 
14 233 -92 
10 223 -94 
3 184 -94 

7 1  
61 
53 
43 
35 
25 
18 
8 
0 

-8 
-18 
-2 5 
-35 
-43 
-53 

-37 305 
-31 314 
-24 321 
-19 322 
-12 325 
-8 324 
-2 323 
2 320 
6 320 
12 315 
16 312 
21 301 

LHA AREA 

SKY 
60 LGHT 
51 LGhT 
43 LGHT 
42 LGHT 
40 L-GHT 
40 LGHT 
42 LGHT 
44 LGHT 
45 LGHT 
49 LGHT 
52 CLD 
6 4  CLD 

SKY 
SKY 

M A R S  DATA9 JULY 209 SCAN 13 

D TLMP X Y LAT LONG LHA AREA 

0 0 10 94 
0 0 8 86 
3 197 6 78 

14 252 4 69 
20 269 2 61 
23 277 0 53 
27 286 0 43 
30 292 -2 35 
33 298 -4 25 
33 298 -6 18 
31 294 -8 8 
30 292 -10 0 
30 292 -12 -8 
28 288 -14 -18 
28 288 -16 -25 
28 288 -16 -35 
27 286 -18 -43 
23 277 -20 -53 
19 267 -22 -61 
15 255 -24 -69 
11 242 -25 -78 
5 215 -27 -86 

-66 
-55 
-47 
-39 
-33 
-28 
-2 1 
-16 
-10 
-6 
-0 
4 
9 
14 
19 
25 
30 
36 
42 
47 
56 
63 

40 -32 LGHT 
34 -26 LGHT 
31 -23 LGhT 
29 -21 LGhT 
27 -19 LGHT 
26 -18 LGHT 
26 -18 LGhT 
25 -17 LGHT 
24 -16 MARG 
22 -15 MAHG 
2 1  -13 MAHG 
20 -12 MAHG 
19 -11 LGhT 
18 -10 LGhT 
16 -8 LGHT 
16 -8 LGhT 
14 -6 LGHT 
12 -4 LGHT 
9 -1 LGHT 
b 2 LGhT 

35Y 9 LGhT 
348 20 LGHT 

3 197 -29 -94 72 314 54 LGhT 
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MARS DATA, JULY 209 SCAN 1 4  MARS DATA, JULY 219 SCAN 1 

0 TEMP 

2 183 
2 183 
3 193 
6 218 

11  237 
1 4  247 
15 250 
1 9  261 
22 268 
23  270 
22  268 
22 268 
23  270 
22  268 
20  263 
1 9  261 
18 258 
1 4  247 
12  241 

8 227 
6 218 
3 193 

X Y LAT LONG LHA 

49 100  
47 92  
45 8 4  -55 7 9  -70 
4 3  7 6  -47 6 6  -57 
41 6 7  -38 59 -49 
39  57 -31  55 -45 
37 4 9  -25 52 -42 
35 41  -20 50 -40 
33 31  -14  48 -38 
31  22 -8 46 -36  
29  1 4  -4 45 -35 
29  4 2 45 -35 
27 -4 6 44 -34  
25  -14 1 2  43 -33 
2 4  -22 17  42  -32 
22 -31  22 4 1  -31  
20  -41  29 40 -31  
18 -47 32 40 -30  
1 6  -55 38 39 -29 
1 4  -65 45 39 -29 
12  -75 52 39 -29 
1 0  -82 6 0  39 -29 

NARS DATA, JULY 219 SCAN 2 

AREA 

SKY 
SKY 

LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 

D TEMP X Y LAT LONG 

2 181 -37 8 4  - 5 4  311 
15 246 -39 7 6  -46 316 
29  270 -39 67  -38 321 
32 283 -41  57 -31  322 
3 4  287 -43 51  -27 322 
38 293  -45 37  -18 322 
4 1  298 -47 27 -12 322 
43  301 -49 18  -6 321 
42  300 -49 8 -1 321 
40  297 -51 0 4 320 

37 292 -55 -18 1 4  316 
39  295 -53 -8 8 316 

34  287 -57 -27 19  314  
30  279 -59 -37 25 310 
25 270 -59 -51  34 306 
20  259 -61  -57 37 301 
16  249 -63 -67 4 4  290 
7 220 -65 -76 
3 191  -67 -84  

LHA AREA 

22 LGHT 
17 LGHT 
12 LGHT 
1 1  LGHT 
1 1  LGHT 
1 0  LGHT 
1 1  LGHT 
12 LGHT 
1 1  LGHT 
13  LGhT 
14 LGHT 
17 LGHT 
1 9  LGHT 
23  LGHT 
27 LGHT 
32 LGHT 
43 LGHT 

SKY 
SKY 

D TEMP X Y 

2 179 -37 102 
10  229  -41 92 
1 8  251 -43 82 
25  266 -47 7 5  
30 276 -49 6 5  
33  281 -53 55  
36 286 -57 45  
39  291 -61  35 
40  292 -65 25  
40  292 -67 16  
39  291 -71  6 
38 289 -73 -4 
36 286 -76 -14  
32 279 -80 -24  
27 270 -82 -33 
20  255 -86 -43 
1 4  240 -90 -53 

6 211  -94  -63 
1 168 -96 -73 

LAT LONG LHA 

-53 304 27 
-45 307 2 4  
-37 311  20  
-30 311 20 
-23 311 20 
-17 309 22 
-12 307 23  

-6 307 2 4  
-0 3 0 4  27 

5 302 29 
11  296 33 
16  292 39 
22 287 4 4  
27 2 7 4  57 

D TEMP 

1 173 
5 217 
8 232 

12 247 
13  251 
17 263 
18 266 
1 9  269 
18 266 
18  266 
1 9  269 
1 9  269 
17 263 
17 263 
1 4  254 
1 1  244 

7 228 
3 198 
1 173 
0 0  

ARkA 

SKY 
SKY 

LGhT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGhT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGhT 

SKY 
SKY 
SKY 

MARS DATA, JULY 219 SCAN 3 

X Y LAT L O W  LHA AREA 

45  82 -53 
45 7 3  -43 
43  65  -37 
43 55 -30 
41 45 -23 
39 37 -18 
39  27 -12 
37 18  -6 
35 8 -0 
35 -2 5 
33 -12 1 1  
31 -22 17 
29 -27 20  
29 -37 26  
27 -47 32 
27 -57 39 
25 -63 43  
25 -75 52 
24 -84  6 1  
2 4  -94  7 3  

4 1  -66 LGHT 
3 1  -56 LGHT 
26 -50 LGhT 
23 -48 LGhT 
20 -44  LGhT 
18 -42 LGHT 
17 -42 LGHT 
15 -40 LGhT 
1 4  -39 LGHT 
14 -39 LGhT 
13 -38 LGHT 
12 -37 LGHT 
11  -36 LGHT 
12  -37 LGHT 
12 -37 LGHT 
1 4  -38 LGHT 
1 4  -38 LGHT 
18  -42 LGHT 
23 -47 LGHT 
47 -72 LGhT 
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MARS DATA, JULY 219 SCAN 5 FiARS DATA. JULY 219 SCAN 4 

D TEMP X Y LAT LONG LHA AREA 

1 169 4 98 
7 219 2 88  

17 250 0 7 8  
27 272 -2 6 9  
29  276 -4 5 9  
32 281 -4  4 9  
35 287 -6 39 
38 291 -8 29  
40 295 -10  20  
41  296 -12 1 0  
4 1  296 -14  0 
40  295 -16 -10 
39  293 -18 -20 
35 287 -20 -29 
3 1  280 -22 -39 
26  270 - 2 4  -49 
1 9  255 -25 -59 
13  239 -27 -69 

6 213 -29 -78 
4 199 -31  -88 
2 180 -33 -98 

-74  3 -26 
-58 357 -20 
-47 355 -18 
-39 353 -16 
-32 352 -15 
-25 352 -15 
-19 351 -14  
-13 350 -13 

-7 349 -12 
-1  348 -11  

4 347 -10 
1 0  346 -9  
1 6  344  -7 
21  343 -6 
27 341 -4 
33 339 -2 . 
40  335 2 
47 331  6 
55 3 2 4  13  
65  307 30 

LGhT 
LGHT 
LGHT 

LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 

SKY 

LGHT 

Y LAT LON; U TEMP X 

1 169 -45 
3 190  -47 

12 236 -47 
22 261 -49 
31  279 -49 
35 286 -53 
37 289  -53 
40 294  -55 
42  297 -57 
4 1  296 -59 
40 294 -59 
39 293 -61  
36 288 -61 
31  279 -63 
27 272 -63 
2 1  259 -65 
1 4  242 -67 

8 223 -69 
3 190  -69 

88 
7 8  
6 9  
5 9  
4 9  
39  
29  
2 0  
10  

0 
-10 
-20 
-2 9 
-39 
-49 
-59 
-69 
-78 
-88 

-60  2 9 1  
-49 311 
-40 319 
-33 321 
-26 3 2 4  
-20 322 
-14  324  

-8 323 
-2 322 

3 321 
9 320 

15  318 
20  310 
26  312 
32 309 
39 301 
45 286 

LHA AREA 

48 LGHT 
28 LGHT 

18  LGHT 
15 LGHT 
16 LGHT 
15 LGHT 
1 6  LGHT 
17  LGHT 
18 LGHT 
19 LGHT 
2 1  LGHT 
23 LGHT 
26 LGHT 
30 LGhT 
38 LGHT 
52 LGHT 

SKY 
SKY 

20 LGHT 

MARS DATA. JULY 219 SCAN 7 M A R S  DATA. JULY 219 SCAN b 

D TI-MP X 

1 166 -62 
4 197 -64  

12 235 -66 
2 4  264  -68 
34 282 -70 
36  286 -72 
36 286 -74  
37 287 -74  
37 287 -76 
37 287 -78 
34  282 -80 
32 279 -82 
28 272 -84  
23  262 -86 
1 8  250 -88 
16  245 -90 

3 189 -72 
1 168 -94  

Y 

7 4  
6 6  
6 0  
54  
48 
42 
36 
30  
22 
1 6  
10  

4 
-4 
-10 
-16 
-22 
-30 
-36 

LAT LONG 

-46 297 
-39 305 
-34  307 
-30 309  
-26 309 
-22 309 
-18 309 
-15 311 
-10 310 

-7 309 
-3 307 

0 305 
5 303  
8 300 

1 1  297 
14 292 
2 0  310 

LHA 

45 
37 
35 
3 4  
33 
33 
33 
32 
33 
34  
35 
37 
40  
42  
46  
50  
32 

AHtA 

LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 
LGHT 

SKY 

D TEMP 

1 1 7 1  
2 183 
9 231 

12 242 
1 5  251 
19 262 
22 269 
23  271  
2 4  274 
2 1  267 
2 1  267 
21  267 
20 264  
18 259 
1 4  248 
1 1  238 

8 227 
4 203 
3 194  
1 1 7 1  

X Y LAT LONG LHA A R t A  

32 90 -61  
32 82  -51 
32 72  -42 
32 62  - 3 4  
32 52 -27 
32 42  -21 
32 32 -15 
32 20  -7 
32 10  -2 
32 0 4 
32 -8 9 
32 -18 1 4  
32 -26 1 9  
32 -36 25  
32 -44  30  
32 -54  37 
32 -62 42 
32 -72 50  
32 -82 5 9  
32 -90 67  

43  -59 LGHT 
33 -49 LGHT 
28 -43 LGhT 
25 -41  LGHT 
23 -39 LGHT 
22 -38 LGhT 
21 -37 MAHG 
2 1  -37 MAHG 
21 -37 MAhG 
2 1  -37 MARG 
21 -37 LGHT 
2 1  -37 LGHT 
22 -38 LGHT 
23  -39 LGHT 
2 4  -40 LGhT 
25 -41 LGHT 
28 -44 LGHT 
32 -48 LGHT 
40 -56 LGHT 
57 -72 LGhT 
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MARS DATA, J U L Y  211 SCAN 9 k A R S  DATA. J U L Y  239 SCAN 1 

D TEMP X 

7 219 -103 
22 262 -95 
34  285 -85 
3 9  293 -73 
40  255 -63 
4 1  296 -51  
44  3 0 1  -44 
43 299 -32 
40 295 -22 
38 2 9 1  -12 
34  285 -2 
32 281 8 
28 274 18  
26  270 26 
24 266 38 
20 257 48 
18 252 57  
13 239 65  
11 233 75  

7 219 83  
5 206 93  
3 190 1 0 1  

Y 

-2 
-2 
-2 
-2 
-2 
-4 
-4 
-4 
-4 
-4 
-4 
-4 
-4 
-4 
-4 
-6 
-6 
-6 
-6 
-6 
-6 
-6 

L A T  LONG L H A  AR€A 

2 
3 
4 
4 
6 
6 
6 
6 
7 
7 
7 
7 
6 
6 
7 
7 
7 
6 
6 
5 

SKY 
292 5 4  LGHT 
305 41 LGHT 
317  29  L G H T  
324  22 LGHT 
333  1 3  L G H T  
338 8 LGHT 
345 1 LGHT 
3 5 1  -5 L G H T  
357 -11 L G H T  

3 -17 L G H T  
9 -22 L G t i T  

1 4  -28 L G H T  
19  -33 LGHT 
26 -40 LGHT 
3 3  -47 LGHT 
39 -53 LGHT 
45 -59 L G H T  
53 -67 L G H T  
6 1  -75 L G H T  
73  -87 L G H T  

SKY 

MARS DATA, JULY 239 SCAN 2 

0 T t M P  X Y 

7 230 -92 -20 
16 264 -84  -20 
2 1  279 -76 -20 
26 291 -68 -18 
27 293 -60 -18 
29 298 -52 -18 
28 296 -42 -18 
30 300 -34  -18 
30  300 -26 -18 
28 296 -18 -18 
28 296 -8 -18 
27 293 0 -16 
25 289 10  -16 
23  284 20 -16 
2 1  279 28 -16 
18 270 36  -16 
15 261  4 4  -16 
12 2 5 1  5 4  -16 
10 2G3 62 -16 

6 226 7 0  -14 
4 211  80 -14 
3 201  88 -14 
1 174 9 6  -14 
0 0 104  -14 

L A T  LONG 

13 262 
14  273 
14 282 
14  289 
14 295 
1 4  3 0 1  
14  308 
15 313 

15  323 
15 328 
1 4  333 
14  339 
14 345 
14 350 
13 355 
13 0 
13  7 
13  13 
11 15 
11 28 
10 37  

9 50  

15 318 

L H A  

5 1  
40  
3 1  
24  
18  
12 

6 
0 

-5 
-9 

-15 
-20 
-26 
-32 
-37 
-42 
-47 
-54 
-60 
-66 
-75 
-84  
-97 

A R t A  

L G H T  
LGHT 
S.M. 
5.M. 
LGHT 
LGHT 
L G H T  
L G H T  
LGHT 
L G h T  
L G H T  
LGHT 
L G H T  
LGHT 
L G H T  
L G H T  
L G H T  
L G H T  
L G H T  
L G H T  
L G H T  
L G H T  
L G H T  

SKY 

f~ TEMP % Y 

2 193 -108 -18 
4 217 -100 -18 

10 249 -94 -18 
13  261  -86 -16 
17 275 -78 -16 
20  284 -70 -16 
23 292 -62 -16 
24 295 -54 -16 
25 297 -46 -14 
24 295 -36 -14 
25 297 - 2 8  -14  
25  297 -22 -14 
26  300 -12 -14 
24  295 -4 -12 
22 289 6 -12 
19 281  14  -12 
16 271  22 -12 
15 268 30 -10 
12 257 38 -10 
10 249 48 -10 

9 245 56 -10 
6 230 6 4  -10 
5 224 74  -8 
3 206 82 -8 
3 206 9 0  -8 
2 193 96  -8 

L A T  LONG 

12 2 5 9  
11 270 
12 278 
12 285 
13 291  
13 298 
12 303 
12 309 
12 314  
12 319 
13 324 
11 329 
11 334 
11 340 
11 344  
10 349 
1 0  354  
IO 360 
9 6 
9 12 
8 19  
7 26 
7 35  
6 L 7  

L H A  

52 
4 1  
3 3  
26  
20  
13 

8 
2 

-3 
-8 

-13 
-16 
-23 
-29 
-34 
-36 
-43 
-49 
-55 
-6 1 
-6 8 
-75 
-84 
-Q7 

M A R S  DATA, J U L Y  239 SCAN 3 

D TEMP X 

3 198 -98 
15  257 -90 
23 174, -80 
30 294 -70 
33 300 -62 
3 1  296 -52 
32 298 -42 
32 296 -34  
33 300 -24 
33 300 -16 
3 1  296 -6 
30  294 4 
26  286 12 
24  281  22 
2 1  274 32 
20 2 7 1  40 
17  263 50  
12  247 60 
10 240 68  

7 227 7 8  
5 217 88 
3 198 96  

Y L A T  LONG L H A  

20  
20 -10 270 46  
20  -9 282 34 
20 -8 2 9 1  25 
20 -8 297 19 
20 -8 304 11 
22 -9 3 1 1  5 
22 -8 316 -0 
22 -8 322 -6 
22 -8 327 -11 
22 -8 332 -17 
22 -8 33b -23 
2 4  -9 343 -27 
24  -10 349 -33 
2 4  -10 355 -39 
2 4  -10 360 -44  
24  -10 6 -51  
24  -10 13 -58 
26 -12 20 -64 
2 6  -12 29  -73 
26  -13 4 1  -85 
26  -15 59  -103 

A k t A  

S K Y  
SKY 

L G H T  
L G H T  
S.M. 
5.h. 
5.b1. 
L G H T  
LGHT 
L G h T  
L G H T  
L G H T  
LGHT 
L G b T  

LGHT 
L G h T  
LGHT 
L G H T  
L G H T  
LGHT 
LGkiT 
L G h T  
L G H T  
L G H T  
LGHT 

L G H T  

AREA 

5K Y 
LGHT 
LGHT 
LGHT 
L G H T  
LGHT 
L G h T  
L G h T  
L G H T  
LGHT 
L G H T  
L G h T  
L G h T  
LGHT 
L G H T  
YEFi I 
LGHT 
LGHT 
MAl iG 
L G H T  
L G H T  
L G h T  
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h A R S  DATA. JULY 239 SCAN 4 R A R S  DATA, JULY 239 SCAN 5 

D TLMP X 

1 172 -104  
6 221 -94  

2 1  270 -86 
26  282 -78 
31 293  -68 
3 4  298 -58 
35 300 -48 
3 4  298 -40 
3 3  296  -30 
33 296  -22 
32 2 9 4  -14 
30 2 9 1  -4 
28 286 4 
27 2 8 4  1 4  
25  280  2 4  
2 1  2 7 0  32 
2 0  268 42  
17 260 5 0  
1 4  2 5 1  6 0  
10 237 6 8  

6 2 2 1  7 8  
4 206 8 6  
3 196 9 4  

Y L A T  LONG 

2 4  
2 4  -13 263  
2 4  -12 276  
2 4  -11 285 
2 4  -11 2 9 4  
2 4  -10 3 0 1  
2 4  -10 308 
2 4  -10 313  
2 4  -10 320  
22 -8 325 
22 -8 329  
2 2  -8 335  
2 2  -8 340  
2 2  -8 346 
2 2  -8 3 5 1  
2 2  -8 356 
2 2  -9 3 
2 0  -8 8 
2 0  -8 1 5  
2 0  -8 2 1  
2 0  -9 2 9  
2 0  -9 38 
2 0  -10 50  

L H A  

5 4  
4 1  
32 
2 4  
1 6  
9 
4 

-2 
-7 

-12 
-18 
-23 
-28 
-34  
-39  
-45 
-50 
-57 
-64  
-72 
-8 1 
-93 

AREA 

SKY 
L G H T  

LGHT 
LGHT 
LGHT 
LGHT 
L G H T  
L G H T  
L G H T  
L G H T  
LGHT 
L G H T  
L G H T  
L G H T  
MER I 
MER I 
L G H T  
L G H T  
MARG 
L G h T  
L G H T  
LGHT 

LGHT 

0 TLMP X 

0 0 -74 
7 228 -64  

15  257 -56 
2 0  272 -48 
2 2  277 -38 
2 2  277 -30 
2 7  289  -20 
30 295 -12 
1 8  266 -2 
2 6  286 6 
2 6  286  16 
25 2 8 4  2 4  
2 3  279  34  
1 9  269 42  
16  2 6 0  52  
15 257 6 0  
1 1  244  7 0  
9 236  7 8  
4 209 8 8  
3 1 9 9  9 6  
1 173 1 0 4  

Y L A T  LONG L H A  

6 2  -37 272  47  
6 0  -34  289  3 0  
6 0  -34  297 2 2  
58 -32 305 1 4  
5 8  -31 313 6 
5 6  -30 3 1 9  0 
5 6  -30 326 -7 
5 4  -28 332 -12 
5 4  -28 338  -19  
52  -27 343 -24  
52  -27 350  -31  
5 0  -26 355 -36 

2 -42 5 0  -26 
50  -26 7 -48 
4 8  -25 1 4  -55 
4 8  -25 2 1  -62 
46 -25 30  -71  
46 -25 3 9  -80 
44 -25 5 6  -97 
44 
4 2  

MARS DATA,  JULY 239 SCAN 7 M A R S  DATA. JULY 289 SCAN 1 

U TEMP X 

1 175 -90 
6 227 -80  

15  263 -70 
2 2  284  -60 
2 3  286 -50 
25  2 9 1  -40 
25  2 9 1  -30 
25 2 9 1  -20 
2 4  289 -10 
2 1  2 8 1  0 
2 0  278 1 0  
17 270  2 0  
1 3  257 30  
1 1  249  4 0  
10 245 5 0  

6 227 6 0  
2 1 9 0  7 0  
2 1 9 0  8 0  
0 0 9 0  

Y L A T  LONG L H A  

52 
5 2  -30 275 47 
52  -29  2 9 0  33 
5 2  -28 300 2 3  
52  -28 308 14 
52 -27 316 7 
52  -27 323 -1 
52  -27 330 -7 
5 4  -28 336  -14 
5 4  -28 342  -20 
5 4  -28 349  -27 
5 4  -28 356 -33 
5 4  -28 2 -40 
5 4  -29  10 -47 
5 4  -29  1 7  - 5 5  
5 4  -29  2 6  -64  
5 4  -30 37 -74 
5 4  -31  52  -89  
5 4  

AREA 

SKY 
LGHT 
LGHT 
LGHT 
LGHT 

LGHT 
LGHT 
L G H T  
LGHT 
L G H T  
LGHT 
L G H T  
LGHT 
L G H T  
LGHT 
L G H T  
L G H T  

SKY 

LGHT 

A H t A  

LGHT 
LGHT 
L G h T  
L G H T  
L G H T  
LGHT 
LGHT 
LGHT 
LGHT 
L G H T  
L G h T  
LGHT 
L G H T  
L G H T  
LGHT 
LGHT 
LGHT 
L G H T  
LGHT 

SKY 
SKY 

D TLMP 

1 175 
8 237 

1 3  257 
16  268 
2 1  282 
25  293 
2 6  295 
26  300 
2 7  297 
26  295 
2 3  288 
2 2  285 
2 1  282 
1 9  277 
15  264  

8 237 
5 222 
1 175 

X Y L A T  L O N 5  

-1h  9 0  -60 277 
-20 80  -49 278 
-24  6 8  -39 277 
-26 5 8  -31  278 
-30  4 6  -23 276  
-34  3 4  -16 275 
-38 2 2  -9 273  
-42 10 -2 270  

-50 -10  1 0  265 
-54  -20 15  2 6 1  
-58 -30  2 1  257 
-60 -40 2 7  253  
-64 -50  33 246  
-70 -60 3 9  2 3 1  
-72 -70  
-76 -80  
-78 -90 

-46  0 4 2 6 b  

L H A  A R t A  

-4 L G H T  
-5 LGHT 
-5 LGHT 
-5 L G H T  
-4 L G t i T  
-2 LGHT 
-0 LGHT 

2 LGHT 
4 L G h T  
7 L G H T  

1 1  LGHT 
15 LGHT 
19 L G h T  
27 LGHT 
41 LGHT 

SKY 
SKY 
SK Y 
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MARS DATA. J U L Y  2 8 r  SCAN 2 M A R S  DATA. J U L Y  289 SCAN 4 

D rtMP X Y 

0 0 - 3 0  
3 2 0 4  -30 

15  265 -32 
17 2 7 1  -32 
1 9  277 -34  
2 1  283 -34  
25  293 -36 
26  295 -36 
27 298 -38 
28 3 0 0  -38  
27 298 -40 
2 4  2 9 1  -40 
2 4  2 9 1  -42 
22 285 -42 
2 0  280  -44  
2 0  280  -44 
1 8  2 7 4  -46 
16  268 -46 
1 4  2 6 1  -48 
1 0  246 -48 

6 228 -46  
3 204  -50 
1 175 -52 

9 8  
8 6  
7 8  
6 8  
5 8  
50 
40 
3 0  
2 0  
1 2  
2 

-8 
-18 
-26 
-36 
-46 
-56 
-64  
-74 
-84  
-94  

-102 
-1 1 2  

L A T  LONG 

-56 2 6 4  
-47 268  
-39  272  
-31 2 7 3  
-26 2 7 4  
-19 2 7 4  
-13 275  

-7 2 7 4  
-3 2 7 4  

3 273  
9 273  

14 2 7 1  
1 9  270  
25  267  
3 1  265 
38 2 6 1  
43  257 
5 1  247  
5 9  228  

L H A  A R t A  

SKY 
9 L G H T  

1 LGHT 
0 L G H T  

5 LGHT 

-1 L G H T  
-1 LGHT 
-1 L G H T  
-0 L G H T  
-1 L G H T  

1 L G H T  
1 L G H T  
3 LGHT 
3 L G H T  
6 L G H T  
8 L G H T  

1 3  LGHT 
16 LGHT 
26 LGHT 
46 L G H T  

SKY 
SK Y 
SKY 

M A R S  DATA. J U L Y  289 SCAN 5 

D T t M P  X Y 

2 186 -54  9 0  
4 208 - 5 4  8 4  
8 231 -54  7 8  

13 250 -54  7 0  
1 8  265 -56 6 2  
22 275 -56 5 4  
2 7  287 -56 4 8  
28 2 8 9  -56 40 
2 9  2 9 1  -58 32 
3 1  295 -58 26  
32 297 -58 1 8  
32 297 -58 1 0  
30 293 -60  2 
2Y 2 9 1  -60 -6 
27 287 -60 -14 
25 282 -60 -20 
2 4  280  -62 -28 
2 3  278 -62 -36 
2 3  278 -62 -44 
2 0  270  -62 -50 
1 6  259  -64  -58 
1 2  246 -64  -66 

9 235 -64  -72 
2 1 8 6  -64 -80 
1 1 7 2  -66 -88  

L A T  LONG 

-56 223 
-49  246  
-41  255 
-35 258  
-29 2 6 1  
-25 2 6 3  
-20 2 6 4  
-15 264  
-11 265 

-7 265 
-2 265 

2 2 6 4  
7 2 6 4  

12 263  
15 262  
2 0  260  
2 4  258 
2 9  256  
33 253  
38 246  
44 239  
48  2 2 9  

L H A  AREA 

SKY 
5 5  LGHT 
32 LGHT 

2 0  LGHT 
17 LGHT 
1 5  LGHT 
14 LGHT 
14 L G h T  
1 3  LGHT 
1 3  L G H T  
1 2  LGHT 
1 4  L G H T  
14 L G H T  
15 L G H T  
15 LGHT 
1 8  LGHT 
2 0  L G H T  
2 2  L G H T  
25 L G H T  
3 1  LGHT 
3 9  L G H T  
4 9  L G H T  

SKY 
SKY 

2 3  LGHT 

D TLMP 

0 0 
3 202 
8 2 3 5  
9 240 

11 248 
1 3  255 
1 5  262 
1 6  265 
17 268 
1 9  274 
2 0  277 
2 1  279 
2 2  282 
2 1  279 
2 2  2H2 

2 1  279  

2 1  279 
1 8  2 7 1  
1 6  265  
1 3  255 
1 1  248 

9 240  
6 226 
2 189 
1 1 7 4  
0 0 

2 3  285 

22 2n2 

X Y  

1 2  9 8  
1 2  9 0  
1 2  8 2  
1 2  7 6  
1 0  6 8  
1 0  60 
10 52 
1 0  4 6  
10 38 
1 0  3 0  
1 0  22 
10 14 
1 0  8 
1 0  2 

8 -12 
8 -20 
8 -28 
8 -36  
8 -44 
8 -50  

8 -66 
8 -72 
8 -80 
6 -88 
6 -96 
6 -102 

1 0  -6 

8 -58 

L A T  LONG L H A  

-75 326 -50 
-60 323 -37 
-51  310 -34  
-45 309 -33 
-38 307 -30 
-32 306 -30 
-27 306 -29  
-23 306 -29  
-18 305 -29  
-13 305 -29 

-8 305 -29  
-4 305 -29 
-0 305 -29  

3 305 -29  
8 305 -29 

11 304  -28 
1 6  304 -28 
2 1  304  -28 
26  3 0 4  -28 
3 1  305  -28 
3 4  3 0 5  -29  
4 0  305 -29  
4 6  306 -30  
5 1  307 -30 
58 306 -32 
6 6  308 -32 
7 8  316 -40 

A R t A  

L G H T  
L G H T  

L G H T  
LGHT 
L G h T  
L G H T  
LGHT 
LGHT 
L G H T  
L G h T  
L G H T  
L G H T  
L G h T  
L G h T  
L G H T  
L G H T  

LGHT 

LGHT 
LGHT 
L G H T  
LGHT 
L G H T  
L G H T  
L G H T  
L G H T  
L G h T  
LGHT 

SKY 
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APPENDIX C 

DETERMINATION OF AVERAGE TEMPERATURE 

We wish to derive a relationship between the temperature  at the center 

of a circular  field of view and the temperature  T 

f rom the flux average taken over the field. 
by x t y2 = 1, with a temperature  T at the center and a l inear temperature  

gradient a c r o s s  the field. Let AT be the tempera ture  difference between the 

center and the edge along the x direction. 

we have for  T 

that would be inferred a 
Consider a field of view defined 

2 
0 

n 
If we take the flux to vary  as T , 

a' 

I 

(To t x A T ) ~  2y dx 

p=  -1 
a 1 

If we wri te  y = and make the substitution sin 5 e x, equation (C-1) 

becomes: 

2 
t AT sin 5)n cos 5 d5 . a a  

-a /2  

I have solved this equation under the assumption that AT/T is small, 
0 2 s o  that t e r m s  of higher o r d e r  than (AT/TO) can be neglected: 

c - 1  



T a S T o  [ I  t-g- n - 1  (.-,,“I AT . 

The co r rec t  value for n can be found f rom the Planck function. For 
XT > 3 cm deg, we can write for small changes in  T: 

hc 1.439 n e - = -  
kX T XT * 

At X = 10 p, this approximation holds over the temperature  range of interest ,  

where n var ies  f rom 4.8 to 8 . 0  as T drops f r o m  300 to 180°K. 

An examination of Figure 5 in the text shows that AT/T is always l e s s  

than 1070, so that the e r r o r  in the temperature  introduced by the instrumental  

averaging of f l u x  is l e s s  than 170 and can therefore  be neglected. 

c-2 
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